Normal Approach and Landing (Part 2)


The touchdown is the gentle settling of the airplane onto the landing surface. The round out and touchdown are normally made with the engine idling and the airplane at minimum controllable airspeed so that the airplane touches down on the main gear at approximately stalling speed. As the airplane settles, the proper landing attitude is attained by application of whatever back-elevator pressure is necessary.

Some pilots try to force or fly the airplane onto the ground without establishing the proper landing attitude. The airplane should never be flown on the runway with excessive speed. A common technique to making a smooth touchdown is to actually focus on holding the wheels of the aircraft a few inches off the ground as long as possible using the elevators while the power is smoothly reduced to idle. In most cases, when the wheels are within 2 or 3 feet off the ground, the airplane is still settling too fast for a gentle touchdown; therefore, this descent must be retarded by increasing back-elevator pressure. Since the airplane is already close to its stalling speed and is settling, this added back-elevator pressure only slows the settling instead of stopping it. At the same time, it results in the airplane touching the ground in the proper landing attitude and the main wheels touching down first so that little or no weight is on the nose wheel. [Figure 1]

Figure 1. A well-executed roundout results in attaining the proper landing attitude

After the main wheels make initial contact with the ground, back-elevator pressure is held to maintain a positive AOA for aerodynamic braking and to hold the nose wheel off the ground until the airplane decelerates. As the airplane’s momentum decreases, back-elevator pressure is gradually relaxed to allow the nose wheel to gently settle onto the runway. This permits steering with the nose wheel. At the same time, it decreases the AOA and reduces lift on the wings to prevent floating or skipping and allows the full weight of the airplane to rest on the wheels for better braking action.

It is extremely important that the touchdown occur with the airplane’s longitudinal axis exactly parallel to the direction in which the airplane is moving along the runway. Failure to accomplish this imposes severe side loads on the landing gear. To avoid these side stresses, do not allow the airplane to touch down while turned into the wind or drifting.

After-Landing Roll

The landing process must never be considered complete until the airplane decelerates to the normal taxi speed during the landing roll or has been brought to a complete stop when clear of the landing area. Numerous accidents occur as a result of pilots abandoning their vigilance and failing to maintain positive control after getting the airplane on the ground.

A pilot must be alert for directional control difficulties immediately upon and after touchdown due to the ground friction on the wheels. Loss of directional control may lead to an aggravated, uncontrolled, tight turn on the ground, or a ground loop. The combination of centrifugal force acting on the center of gravity (CG) and ground friction of the main wheels resisting it during the ground loop may cause the airplane to tip or lean enough for the outside wingtip to contact the ground. This imposes a sideward force that could collapse the landing gear.

The rudder serves the same purpose on the ground as it does in the air—it controls the yawing of the airplane. The effectiveness of the rudder is dependent on the airflow, which depends on the speed of the airplane. As the speed decreases and the nose wheel has been lowered to the ground, the steerable nose provides more positive directional control.

The brakes of an airplane serve the same primary purpose as the brakes of an automobile—to reduce speed on the ground. In airplanes, they are also used as an aid in directional control when more positive control is required than could be obtained with rudder or nose wheel steering alone.

To use brakes, on an airplane equipped with toe brakes, the pilot slides the toes or feet up from the rudder pedals to the brake pedals. If rudder pressure is being held at the time braking action is needed, that pressure is not to be released as the feet or toes are being slid up to the brake pedals because control may be lost before brakes can be applied.

Putting maximum weight on the wheels after touchdown is an important factor in obtaining optimum braking performance. During the early part of rollout, some lift continues to be generated by the wing. After touchdown, the nose wheel is lowered to the runway to maintain directional control. During deceleration, the nose may pitch down by braking and the weight transferred to the nose wheel from the main wheels. This does not aid in braking action, so back pressure is applied to the controls without lifting the nose wheel off the runway. This enables directional control while keeping weight on the main wheels.

Careful application of the brakes is initiated after the nose wheel is on the ground and directional control is established. Maximum brake effectiveness is just short of the point where skidding occurs. If the brakes are applied so hard that skidding takes place, braking becomes ineffective. Skidding is stopped by releasing the brake pressure. Braking effectiveness is not enhanced by alternately applying, releasing, and reapplying brake pressure. The brakes are applied firmly and smoothly as necessary.

During the ground roll, the airplane’s direction of movement can be changed by carefully applying pressure on one brake or uneven pressures on each brake in the desired direction. Caution must be exercised when applying brakes to avoid overcontrolling.

The ailerons serve the same purpose on the ground as they do in the air—they change the lift and drag components of the wings. During the after-landing roll, they are used to keep the wings level in much the same way they are used in flight. If a wing starts to rise, aileron control is applied toward that wing to lower it. The amount required depends on speed because as the forward speed of the airplane decreases, the ailerons become less effective. Procedures for using ailerons in crosswind conditions are explained further in this site, in the Crosswind Approach and Landing section.

After the airplane is on the ground, back-elevator pressure is gradually relaxed to place weight on the nose wheel to aid in better steering. If available runway permits, the speed of the airplane is allowed to dissipate in a normal manner. Once the airplane has slowed sufficiently and has turned on to the taxiway and stopped, retract the flaps and perform the after-landing checklist. Many accidents have occurred as a result of the pilot unintentionally operating the landing gear control and retracting the gear instead of the flap control when the airplane was still rolling. The habit of positively identifying both of these controls, before actuating them, must be formed from the very beginning of flight training and continued in all future flying activities.

Stabilized Approach Concept

A stabilized approach is one in which the pilot establishes and maintains a constant angle glide path towards a predetermined point on the landing runway. It is based on the pilot’s judgment of certain visual clues and depends on the maintenance of a constant final descent airspeed and configuration.

An airplane descending on final approach at a constant rate and airspeed is traveling in a straight line toward a spot on the ground ahead. This spot is not the spot on which the airplane touches down because some float occurs during the round out (flare). [Figure 2] Neither is it the spot toward which the airplane’s nose is pointed because the airplane is flying at a fairly high AOA, and the component of lift exerted parallel to the Earth’s surface by the wings tends to carry the airplane forward horizontally.

Figure 2. Stabilized approach

The point toward which the airplane is progressing is termed the “aiming point.” [Figure 2] It is the point on the ground at which, if the airplane maintains a constant glide path and was not flared for landing, it would strike the ground. To a pilot moving straight ahead toward an object, it appears to be stationary. It does not appear to move under the nose of the aircraft and does not appear to move forward away from the aircraft. This is how the aiming point can be distinguished—it does not move. However, objects in front of and beyond the aiming point do appear to move as the distance is closed, and they appear to move in opposite directions. During instruction in landings, one of the most important skills a pilot must acquire is how to use visual cues to accurately determine the true aiming point from any distance out on final approach. From this, the pilot is not only able to determine if the glide path results in either an under or overshoot but, taking into account float during round out, the pilot is able to predict the touchdown point to within a few feet.

For a constant angle glide path, the distance between the horizon and the aiming point remains constant. If a final approach descent is established and the distance between the perceived aiming point and the horizon appears to increase (aiming point moving down away from the horizon), then the true aiming point, and subsequent touchdown point, is farther down the runway. If the distance between the perceived aiming point and the horizon decreases, meaning that the aiming point is moving up toward the horizon, the true aiming point is closer than perceived.

When the airplane is established on final approach, the shape of the runway image also presents clues as to what must be done to maintain a stabilized approach to a safe landing.

Obviously, runway is normally shaped in the form of an elongated rectangle. When viewed from the air during the approach, the phenomenon known as perspective causes the runway to assume the shape of a trapezoid with the far end looking narrower than the approach end and the edge lines converging ahead.

As an airplane continues down the glide path at a constant angle (stabilized), the image the pilot sees is still trapezoidal but of proportionately larger dimensions. In other words, during a stabilized approach, the runway shape does not change. [Figure 3]

Figure 3. Runway shape during stabilized approach

If the approach becomes shallow, the runway appears to shorten and become wider. Conversely, if the approach is steepened, the runway appears to become longer and narrower. [Figure 4]

Figure 4. Change in runway shape if approach becomes narrow or steep

The objective of a stabilized approach is to select an appropriate touchdown point on the runway, and adjust the glide path so that the true aiming point and the desired touchdown point basically coincide. Immediately after rolling out on final approach, adjust the pitch attitude and power so that the airplane is descending directly toward the aiming point at the appropriate airspeed, in the landing configuration, and trimmed for “hands off” flight. With the approach set up in this manner, the pilot is free to devote full attention toward outside references. Do not stare at any one place, but rather scan from one point to another, such as from the aiming point to the horizon, to the trees and bushes along the runway, to an area well short of the runway, and back to the aiming point. This makes it easier to perceive a deviation from the desired glide path and determine if the airplane is proceeding directly toward the aiming point.

If there is any indication that the aiming point on the runway is not where desired, an adjustment must be made to the glide path. This in turn moves the aiming point. For instance, if the aiming point is short of the desired touchdown point and results in an undershoot, an increase in pitch attitude and engine power is warranted. A constant airspeed must be maintained. The pitch and power change, therefore, must be made smoothly and simultaneously. This results in a shallowing of the glide path with the aiming point moving towards the desired touchdown point. Conversely, if the aiming point is farther down the runway than the desired touchdown point resulting in an overshoot, the glide path is steepened by a simultaneous decrease in pitch attitude and power. Once again, the airspeed must be held constant. It is essential that deviations from the desired glide path be detected early so that only slight and infrequent adjustments to glide path are required.

The closer the airplane gets to the runway, the larger and more frequent the required corrections become, resulting in an unstable approach. Common errors in the performance of normal approaches and landings are:
  • Inadequate wind drift correction on the base leg.
  • Overshooting or undershooting the turn onto final approach resulting in too steep or too shallow a turn onto final approach.
  • Flat or skidding turns from base leg to final approach as a result of overshooting/inadequate wind drift correction.
  • Poor coordination during turn from base to final approach.
  • Failure to complete the landing checklist in a timely manner.
  • Unstable approach.
  • Failure to adequately compensate for flap extension.
  • Poor trim technique on final approach.
  • Attempting to maintain altitude or reach the runway using elevator alone.
  • Focusing too close to the airplane resulting in a too high round out.
  • Focusing too far from the airplane resulting in a too low round out.
  • Touching down prior to attaining proper landing attitude.
  • Failure to hold sufficient back-elevator pressure after touchdown.
  • Excessive braking after touchdown.
  • Loss of aircraft control during touchdown and roll out.