Straight and Level Flight (Part 2) - Airplane Basic Flight Maneuvers Using Analog Instrumentation

Power Control

Power produces thrust which, with the appropriate angle of attack of the wing, overcomes the forces of gravity, drag, and inertia to determine airplane performance.

Power control must be related to its effect on altitude and airspeed, since any change in power setting results in a change in the airspeed or the altitude of the airplane. At any given airspeed, the power setting determines whether the airplane is in level flight, in a climb, or in a descent. If the power is increased in straight-and-level flight and the airspeed held constant, the airplane climbs. If power is decreased while the airspeed is held constant, the airplane descends. On the other hand, if altitude is held constant, the power applied determines the airspeed.

The relationship between altitude and airspeed determines the need for a change in pitch or power. If the airspeed is not the desired value, always check the altimeter before deciding that a power change is necessary. Think of altitude and airspeed as interchangeable; altitude can be traded for airspeed by lowering the nose or convert airspeed to altitude by raising the nose. If altitude is higher than desired and airspeed is low, or vice versa, a change in pitch alone may return the airplane to the desired altitude and airspeed. [Figure 1] If both airspeed and altitude are high or if both are low, then a change in both pitch and power is necessary in order to return to the desired airspeed and altitude. [Figure 2]

Power Control, Straight and Level Flight, Airplane Using Analog Instrumentation
Figure 1. Airspeed low and altitude high—lower pitch

Power Control, Straight and Level Flight, Airplane Using Analog Instrumentation
Figure 2. Airspeed and altitude high—lower pitch and reduce power

For changes in airspeed in straight-and-level flight, pitch, bank, and power must be coordinated in order to maintain constant altitude and heading. When power is changed to vary airspeed in straight-and-level flight, a single-engine, propeller-driven airplane tends to change attitude around all axes of movement. Therefore, to maintain constant altitude and heading, apply various control pressures in proportion to the change in power. When power is added to increase airspeed, the pitch instruments indicate a climb unless forward elevator control pressure is applied as the airspeed changes. With an increase in power, the airplane tends to yaw and roll to the left unless counteracting aileron and rudder pressures are applied. Keeping ahead of these changes requires increasing cross-check speed, which varies with the type of airplane and its torque characteristics, the extent of power, and speed change involved.

Power Settings

Power control and airspeed changes are much easier when approximate power settings necessary to maintain various airspeeds in straight-and-level flight are known in advance. However, to change airspeed by any appreciable amount, the common procedure is to underpower or overpower on initial power changes to accelerate the rate of airspeed change. (For small speed changes, or in airplanes that decelerate or accelerate rapidly, overpowering or underpowering is not necessary.)

Consider the example of an airplane that requires 23 inches of mercury ("Hg) of manifold pressure to maintain a normal cruising airspeed of 120 knots, and 18 "Hg of manifold pressure to maintain an airspeed of 100 knots. The reduction in airspeed from 120 knots to 100 knots while maintaining straight-and-level flight is discussed below and illustrated in Figures 3, 4, and 5.

Power Settings, Airplane Basic Flight Maneuvers Using Analog Instrumentation
Figure 3. Straight-and-level flight (normal cruising speed)

Power Settings, Airplane Basic Flight Maneuvers Using Analog Instrumentation
Figure 4. Straight-and-level flight (airspeed decreasing)

Power Settings, Airplane Basic Flight Maneuvers Using Analog Instrumentation
Figure 5. Straight-and-level flight (reduced airspeed stabilized)

Instrument indications, prior to the power reduction, are shown in Figure 3. The basic attitude is established and maintained on the attitude indicator. The specific pitch, bank, and power control requirements are detected on these primary instruments:

Altimeter—Primary Pitch
Heading Indicator—Primary Bank
Airspeed Indicator—Primary Power

Supporting pitch-and-bank instruments are shown in Figure 4. Note that the supporting power instrument is the manifold pressure gauge (or tachometer if the propeller is fixed pitch). However, when a smooth power reduction to approximately 15 "Hg (underpower) is made, the manifold pressure gauge becomes the primary power instrument. [Figure 4] With practice, power setting can be changed with only a brief glance at the power instrument, by sensing the movement of the throttle, the change in sound, and the changes in the feel of control pressures.

As thrust decreases, increase the speed of the cross-check and be ready to apply left rudder, back-elevator, and aileron control pressure the instant the pitch-and-bank instruments show a deviation from altitude and heading. As proficiency is obtained, a pilot learns to cross-check, interpret, and control the changes with no deviation of heading and altitude. Assuming smooth air and ideal control technique as airspeed decreases, a proportionate increase in airplane pitch attitude is required to maintain altitude. Similarly, effective torque control means counteracting yaw with rudder pressure.

As the power is reduced, the altimeter is primary for pitch, the heading indicator is primary for bank, and the manifold pressure gauge is momentarily primary for power (at 15 "Hg in this example). Control pressures should be trimmed off as the airplane decelerates. As the airspeed approaches the desired airspeed of 100 knots, the manifold pressure is adjusted to approximately 18 "Hg and becomes the supporting power instrument. The ASI again becomes primary for power. [Figure 5]

Airspeed Changes in Straight-and-Level Flight

Practice of airspeed changes in straight-and-level flight provides an excellent means of developing increased proficiency in all three basic instrument skills and brings out some common errors to be expected during training in straight-and-level flight. Having learned to control the airplane in a clean configuration (minimum drag conditions), increase proficiency in crosscheck and control by practicing speed changes while extending or retracting the flaps and landing gear. While practicing, be sure to comply with the airspeed limitations specified in the POH/AFM for gear and flap operation.

Sudden and exaggerated attitude changes may be necessary in order to maintain straight-and-level flight as the landing gear is extended and the flaps are lowered in some airplanes. The nose tends to pitch down with gear extension, and when flaps are lowered, lift increases momentarily (at partial flap settings) followed by a marked increase in drag as the flaps near maximum extension.

Control technique varies according to the lift and drag characteristics of each airplane. Accordingly, knowledge of the power settings and trim changes associated with different combinations of airspeed, gear, and flap configurations reduces instrument cross-check and interpretation problems.

For example, assume that in straight-and-level flight instruments indicate 120 knots with power at 23 "Hg/2,300 revolutions per minute (rpm), gear and flaps up. After reduction in airspeed, with gear and flaps fully extended, straight-and-level flight at the same altitude requires 25 "Hg manifold pressure/2,500 rpm. Maximum gear extension speed is 115 knots; maximum flap extension speed is 105 knots. Airspeed reduction to 95 knots, gear and flaps down, can be made in the following manner:
  1. Maintain rpm at 2,500, since a high power setting is used in full drag configuration.
  2. Reduce manifold pressure to 10 "Hg. As the airspeed decreases, increase cross-check speed.
  3. Make trim adjustments for an increased angle of attack and decrease in torque.
  4. Lower the gear at 115 knots. The nose may tend to pitch down and the rate of deceleration increases. Increase pitch attitude to maintain constant altitude, and trim off some of the back-elevator pressures. If full flaps are lowered at 105 knots, cross-check, interpretation, and control must be very rapid. A simpler technique is to stabilize attitude with gear down before lowering the flaps.
  5. Since 18 "Hg manifold pressure will hold level flight at 100 knots with the gear down, increase power smoothly to that setting until the ASI shows approximately 105 knots. The attitude indicator now shows approximately two-and-a-half bar width nosehigh in straight-and-level flight.
  6. Actuate the flap control and simultaneously increase power to the predetermined setting (25 "Hg) for the desired airspeed, and trim off the pressures necessary to hold constant altitude and heading. The attitude indicator now shows a bar width nose-low in straight-and-level flight at 95 knots.

Proficiency in straight-and-level flight is attained when a pilot can consistently maintain constant altitude and heading with smooth pitch, bank, power, and trim control during the pronounced changes in aircraft attitude.

Trim Technique

Proper trim technique is essential for smooth and precise aircraft control during all phases of flight. By relieving all control pressures, it is much easier to hold a given attitude constant and devote more attention to other flight deck duties.

An aircraft is trimmed by applying control pressures to establish a desired attitude, then adjusting the trim so the aircraft maintains that attitude when the flight controls are released. Trim the aircraft for coordinated flight by centering the ball of the turn-and-slip indicator, by using rudder trim in the direction the ball is displaced from the center. Differential power control on multiengine aircraft is an additional factor affecting coordinated flight. Use balanced power or thrust, when possible, to aid in maintaining coordinated flight.

Changes in attitude, power, or configuration requires a trim adjustment in most cases. Using trim alone to establish a change in aircraft attitude invariably leads to erratic aircraft control. Smooth and precise attitude changes are best attained by a combination of control pressures and trim adjustments. Therefore, when used correctly, trim adjustment is an aid to smooth aircraft control.

Common Errors in Straight-and-Level Flight


Pitch errors usually result from the following faults:
  1. Improper adjustment of the attitude indicator’s miniature aircraft to the wings-level attitude. Following the initial level off from a climb, check the attitude indicator and make any necessary adjustment in the miniature aircraft for level flight indication at normal cruise airspeed.
  2. Insufficient cross-check and interpretation of pitch instruments. For example, the airspeed indication is low. The pilot, believing a nose-high attitude exists, applies forward pressure without noting that a low power setting is the cause of the airspeed discrepancy. Increase cross-check speed to include all relevant instrument indications before making a control input.
  3. Uncaging the attitude indicator (if caging feature is present) when the airplane is not in level flight. The altimeter and heading indicator must be stabilized with airspeed indication at normal cruise before pulling out the caging knob to obtain correct indications in straight-and-level flight at normal cruise airspeed.
  4. Failure to interpret the attitude indicator in terms of the existing airspeed.
  5. Late pitch corrections. Pilots commonly like to leave well enough alone. When the altimeter indicates a 20 foot error, there is a reluctance to correct it, perhaps because of fear of overcontrolling. If overcontrolling is the anticipated error, practice small corrections and find the cause of overcontrolling. If any deviation is tolerated, errors increase.
  6. Chasing the vertical speed indications. This tendency can be corrected by proper cross-check of other pitch instruments, as well as by increasing overall understanding of instrument characteristics.
  7. Using excessive pitch corrections for the altimeter evaluation. Rushing a pitch correction by making a large pitch change usually aggravates the existing error, saving neither time nor effort.
  8. Failure to maintain established pitch corrections, a common error associated with cross-check and trim errors. For example, having established a pitch change to correct an altitude error, there is a tendency to slow down the cross-check, waiting for the airplane to stabilize in the new pitch attitude. To maintain the attitude, continue to cross-check and trim off the pressures.
  9. Fixations during cross-check. After initiating a heading correction, for example, there is a tendency to become preoccupied with bank control and miss errors in pitch attitude. Likewise, during an airspeed change, unnecessary gazing at the power instrument is common. A small error in power setting is of less consequence than large altitude and heading errors. The airplane will not decelerate any faster by staring at the manifold pressure gauge.


Heading errors usually result from the following faults:
  1. Failure to cross-check the heading indicator, especially during changes in power or pitch attitude.
  2. Misinterpretation of changes in heading, with resulting corrections in the wrong direction.
  3. Failure to note and remember a preselected heading.
  4. Failure to observe the rate of heading change and its relation to bank attitude.
  5. Overcontrolling in response to heading changes, especially during changes in power settings.
  6. Anticipating heading changes with premature application of rudder control.
  7. Failure to correct small heading deviations. Unless zero error in heading is the goal, a pilot will tolerate larger and larger deviations. Correction of a 1 degree error takes a lot less time and concentration than correction of a 20° error.
  8. Correcting with improper bank attitude. If correcting a 10° heading error with 20° of bank, the airplane rolls past the desired heading before the bank is established, requiring another correction in the opposite direction. Do not multiply existing errors with errors in corrective technique.
  9. Failure to note the cause of a previous heading error and thus repeating the same error. For example, the airplane is out of trim, with a left wing low tendency. Repeated corrections for a slight left turn are made, yet trim is ignored.
  10. Failure to set the heading indicator properly or failure to uncage it.


Power errors usually result from the following faults:
  1. Failure to know the power settings and pitch attitudes appropriate to various airspeeds and airplane configurations.
  2. Abrupt use of throttle.
  3. Failure to lead the airspeed when making power changes. For example, during airspeed reduction in level flight, especially with gear and flaps extended, adjust the throttle to maintain the slower speed before the airspeed actually reaches the desired speed. Otherwise, the airplane decelerates to a speed lower than that desired, resulting in additional power adjustments. The amount of lead depends upon how fast the airplane responds to power changes.
  4. Fixation on airspeed or manifold pressure instruments during airspeed changes, resulting in erratic control of both airspeed and power.


Trim errors usually result from the following faults:
  1. Improper adjustment of seat or rudder pedals for comfortable position of legs and feet. Tension in the ankles makes it difficult to relax rudder pressures.
  2. Confusion about the operation of trim devices that differ among various airplane types. Some trim wheels are aligned appropriately with the airplane’s axes; others are not. Some rotate in a direction contrary to what is expected.
  3. Faulty sequence in trim technique. Trim should be used not as a substitute for control with the wheel (stick) and rudders, but to relieve pressures already held to stabilize attitude. As proficiency is gained, little conscious effort is required to trim off the pressures as they occur.
  4. Excessive trim control. This induces control pressures that must be held until the airplane is trimmed properly. Use trim frequently and in small amounts.
  5. Failure to understand the cause of trim changes. Lack of understanding the basic aerodynamics related to basic instrument skills causes a pilot to continually lag behind the airplane.

Straight and Level Flight - Part 1 (Using Analog Instrumentation)
Straight Climbs and Descents (Using Analog Instrumentation)
Turns (Using Analog Instrumentation)
Unusual Attitudes and Recoveries (Using Analog Instrumentation)
Instrument Takeoff (Using Analog Instrumentation)
Basic Instrument Flight Patterns (Using Analog Instrumentation)
Previous Post Next Post