Go-Arounds (Rejected Landings) and Ground Effect

Go-Arounds (Rejected Landings)

Whenever landing conditions are not satisfactory, a go-around is warranted. There are many factors that can contribute to unsatisfactory landing conditions. Situations such as air traffic control (ATC) requirements, unexpected appearance of hazards on the runway, overtaking another airplane, wind shear, wake turbulence, mechanical failure, and/or an unstable approach are all examples of reasons to discontinue a landing approach and make another approach under more favorable conditions. The assumption that an aborted landing is invariably the consequence of a poor approach, which in turn is due to insufficient experience or skill, is a fallacy. The go-around is not strictly an emergency procedure. It is a normal maneuver that is also used in an emergency situation. Like any other normal maneuver, the go-around must be practiced and perfected. The flight instructor needs to emphasize early on, and the pilot must be made to understand, that the go-around maneuver is an alternative to any approach and/or landing.

Although the need to discontinue a landing may arise at any point in the landing process, the most critical go-around is one started when very close to the ground. The earlier a condition that warrants a go-around is recognized, the safer the go-around/rejected landing is. The go-around maneuver is not inherently dangerous in itself. It becomes dangerous only when delayed unduly or executed improperly. Delay in initiating the go-around normally stems from two sources:
  1. Landing expectancy or set—the anticipatory belief that conditions are not as threatening as they are and that the approach is surely terminated with a safe landing,
  2. Pride—the mistaken belief that the act of going around is an admission of failure—failure to execute the approach properly. The improper execution of the go-around maneuver stems from a lack of familiarity with the three cardinal principles of the procedure: power, attitude, and configuration.


Power is the pilot’s first concern. The instant a pilot decides to go around, full or maximum allowable takeoff power must be applied smoothly and without hesitation and held until flying speed and controllability are restored. Applying only partial power in a go-around is never appropriate. The pilot must be aware of the degree of inertia that must be overcome before an airplane that is settling towards the ground can regain sufficient airspeed to become fully controllable and capable of climbing or turning safely. The application of power is smooth, as well as positive. Abrupt movements of the throttle in some airplanes causes the engine to falter. Carburetor heat is turned off to obtain maximum power.


Attitude is always critical when close to the ground, and when power is added, a deliberate effort on the part of the pilot is required to keep the nose from pitching up prematurely. The airplane executing a go-around must be maintained in an attitude that permits a buildup of airspeed well beyond the stall point before any effort is made to gain altitude or to execute a turn. Raising the nose too early could result in a stall from which the airplane could not be recovered if the go-around is performed at a low altitude.

A concern for quickly regaining altitude during a go-around produces a natural tendency to pull the nose up. A pilot executing a go-around must accept the fact that an airplane cannot climb until it can fly, and it cannot fly below stall speed. In some circumstances, it is desirable to lower the nose briefly to gain airspeed. As soon as the appropriate climb airspeed and pitch attitude are attained, “rough trim” the airplane to relieve any adverse control pressures. More precise trim adjustments can be made when flight conditions have stabilized.


After establishing the proper climb attitude and power settings, be concerned first with flaps and secondly with the landing gear (if retractable). When the decision is made to perform a go-around, takeoff power is applied immediately and the pitch attitude changed so as to slow or stop the descent. After the descent has been stopped, the landing flaps are partially retracted or placed in the takeoff position as recommended by the manufacturer. Caution must be used in retracting the flaps. Depending on the airplane’s altitude and airspeed, it is wise to retract the flaps intermittently in small increments to allow time for the airplane to accelerate progressively as they are being raised. A sudden and complete retraction of the flaps could cause a loss of lift resulting in the airplane settling into the ground. [Figure 1]

Figure 1. Go-around procedure

Unless otherwise specified in the AFM/POH, it is generally recommended that the flaps be retracted (at least partially) before retracting the landing gear for two reasons. First, on most airplanes full flaps produce more drag than the landing gear; and second, in case the airplane inadvertently touches down as the go-around is initiated; it is most desirable to have the landing gear in the down-and-locked position. After a positive rate of climb is established, the landing gear is retracted.

When takeoff power is applied, it is usually necessary to hold considerable pressure on the controls to maintain straight flight and a safe climb attitude. Since the airplane is trimmed for the approach (a low power and low airspeed condition), application of maximum allowable power requires considerable control pressure to maintain a climb pitch attitude. The addition of power tends to raise the airplane’s nose suddenly and veer to the left. Forward elevator pressure must be anticipated and applied to hold the nose in a safe climb attitude. Right rudder pressure must be increased to counteract torque and P-factor and to keep the nose straight. The airplane must be held in the proper flight attitude regardless of the amount of control pressure that is required. Trim is applied to relieve adverse control pressures and assist in maintaining a proper pitch attitude. On airplanes that produce high control pressures when using maximum power on go-arounds, use caution when reaching for the flap handle. Airplane control is critical during this high-workload phase.

The landing gear is retracted only after the initial or rough trim is accomplished and when it is certain the airplane will remain airborne. During the initial part of an extremely low go-around, it is possible for the airplane to settle onto the runway and bounce. This situation is not particularly dangerous provided the airplane is kept straight and a constant, safe pitch attitude is maintained. With the application of power, the airplane attains a safe flying speed rapidly and the advanced power cushions any secondary touchdown.

If the pitch attitude is increased excessively in an effort to keep the airplane from contacting the runway, it may cause the airplane to stall. This is likely to occur if no trim correction is made and the flaps remain fully extended. Do not attempt to retract the landing gear until after a rough trim is accomplished and a positive rate of climb is established.

Ground Effect

Ground effect is a factor in every landing and every takeoff in fixed-wing airplanes. Ground effect can also be an important factor in go-arounds. If the go-around is made close to the ground, the airplane may be in the ground effect area. Pilots are often lulled into a sense of false security by the apparent “cushion of air” under the wings that initially assists in the transition from an approach descent to a climb. This “cushion of air,” however, is imaginary. The apparent increase in airplane performance is, in fact, due to a reduction in induced drag in the ground effect area. It is “borrowed” performance that must be repaid when the airplane climbs out of the ground effect area. The pilot must factor in ground effect when initiating a go-around close to the ground. An attempt to climb prematurely may result in the airplane not being able to climb or even maintain altitude at full power.

Common errors in the performance of go-arounds (rejected landings) are:
  • Failure to recognize a condition that warrants a rejected landing
  • Indecision
  • Delay in initiating a go-around
  • Failure to apply maximum allowable power in a timely manner
  • Abrupt power application
  • Improper pitch attitude
  • Failure to configure the airplane appropriately
  • Attempting to climb out of ground effect prematurely
  • Failure to adequately compensate for torque/P factor
  • Loss of aircraft control