Helicopter Normal Climb and Normal Descent

Normal Climb

The entry into a climb from a hover has already been described in the Normal Takeoff from a Hover subsection; therefore, this discussion is limited to a climb entry from cruising flight.


To enter a climb in a helicopter while maintaining airspeed, the first actions are increasing the collective and throttle, and adjusting the pedals as necessary to maintain a centered ball in the slip/skid indicator. Moving the collective up requires a slight aft movement of the cyclic to direct all of the increased power into lift and maintain the airspeed. Remember, a helicopter can climb with the nose down and descend with the nose up. Helicopter attitude changes mainly reflect acceleration or deceleration, not climb or descent. Therefore, the climb attitude is approximately the same as level flight in a stable climb, depending on the aircraft’s horizontal stabilizer design.

If the pilot wishes to climb faster, with a decreased airspeed, then the climb can be initiated with aft cyclic. Depending on initial or entry airspeed for the climb, the climb can be accomplished without increasing the collective, if a much slower airspeed is acceptable. However, as the airspeed decreases, the airflow over the vertical fin decreases necessitating more antitorque (left) pedal application.

To level off from a climb, start adjusting the attitude to the level flight attitude a few feet prior to reaching the desired altitude. The amount of lead depends on the rate of climb at the time of level-off (the higher the rate of climb, the more the lead). Generally, the lead is 10 percent of the climb rate. For example, if the climb rate is 500 feet per minute (fpm), you should lead the level-off by 50 feet.

To begin the level-off, apply forward cyclic to adjust and maintain a level flight attitude, which can be slightly nose low. Maintain climb power until the airspeed approaches the desired cruising airspeed, then lower the collective to obtain cruising power and adjust the throttle to obtain and maintain cruising rpm. Throughout the level-off, maintain longitudinal trim with the antitorque pedals.

Common Errors

1. Failure to maintain proper power and airspeed.
2. Holding too much or too little antitorque pedal.
3. In the level-off, decreasing power before adjusting the nose to cruising attitude.

Normal Descent

A normal descent is a maneuver in which the helicopter loses altitude at a controlled rate in a controlled attitude.


To establish a normal descent from straight-and-level flight at cruising airspeed, lower the collective to obtain proper power, adjust the throttle to maintain rpm, and increase right antitorque pedal pressure to maintain heading in a counterclockwise rotor system, or left pedal pressure in a clockwise system. If cruising airspeed is the same as or slightly above descending airspeed, simultaneously apply the necessary cyclic pressure to obtain the approximate descending attitude. If the pilot wants to decelerate, the cyclic must be moved aft. If the pilot desires to descend with increased airspeed, then forward cyclic is all that is required if airspeed remains under the limit. As the helicopter stabilizes at any forward airspeed, the fuselage attitude will streamline due to the airflow over the horizontal stabilizer. As the airspeed changes, the airflow over the vertical stabilizer or fin changes, so the pedals must be adjusted for trim.

The pilot should always remember that the total lift and thrust vectoring is controlled by the cyclic. If a certain airspeed is desired, it will require a certain amount of cyclic and collective movement for level flight. If the cyclic is moved, the thrust-versus-lift ration is changed. Aft cyclic directs more power to lift, and altitude increases. Forward cyclic directs more power to thrust, and airspeed increases. If the collective is not changed and there is a change only in cyclic, the total thrust to lift ration does not change; aft cyclic results in a climb, and forward cyclic results in a descent with the corresponding airspeed changes.

To level off from the descent, lead the desired altitude by approximately 10 percent of the rate of descent. For example, a 500 fpm rate of descent would require a 50 foot lead. At this point, increase the collective to obtain cruising power, adjust the throttle to maintain rpm, and increase left antitorque pedal pressure to maintain heading (right pedal pressure in a clockwise rotor system). Adjust the cyclic to obtain cruising airspeed and a level flight attitude as the desired altitude is reached.

Common Errors

1. Failure to maintain constant angle of decent during training.
2. Failure to level-off the aircraft sufficiently, which results in recovery below the desired altitude.
3. Failure to adjust antitorque pedal pressures for changes in power.